Play Pause Stop Audemic

Seung Kug Choi, Sunmi Park, Subin Jang, Hun Hee Cho, Siwoo Lee, Seungkwon You, Sang-Hyuk Kim, Hyun-Seuk Moon

1
May 1, 2016
Metabolism
DOI :
10.1016/j.metabol.2016.01.009
Article Institutional access
show_chart

OBJECTIVE Celastrol, a triterpene from the root bark of the Chinese medicinal plant Tripterygium wilfordii, has been shown to exhibit anti-oxidant, anti-inflammatory, anti-cancer and insecticidal activities. Also, it has been demonstrated that celastrol has obesity-controlling effects in diet-induced obesity mice. However, direct evidence that celastrol contributes to the development of adipocyte differentiation and lipolysis has not been fully elucidated. Moreover, no previous studies have evaluated whether celastrol may regulate adipogenic transcriptional markers in adipocytes. MATERIALS/
METHODS In order to address the questions above, we extended previous observations and investigated in vitro celastrol signaling study whether celastrol may regulate differentiation, lipolysis and key adipogenic transcriptional pathways in 3T3-L1 adipocytes.
RESULTS Treatment of celastrol not only inhibited adipocyte differentiation (lipid accumulation, glyceraldehyde-3-phosphate dehydrogenase activity and triglyceride content) but also increased lipolysis (glycerol release and free fatty acid release) in 3T3-L1 adipocytes. In addition, all celastrol-regulated functional activities were controlled by PPARγ(2) and C/EBPα signaling pathways in duration of celastrol`s treatment in 3T3-L1 adipocytes.
CONCLUSION Our initial data from in vitro celastrol signaling studies suggest novel insights into the role of PPARγ(2) and C/EBPα as probable mediators of the action of celastrol in regulating adipocyte differentiation and lipolysis in 3T3-L1 adipocytes.

Please Log In to leave a comment.