Syed Pavel Afrose, Chiranjit Mahato, Pooja Sharma, Lisa Roy, Dibyendu Das

13
Jan 6, 2022
Journal of the American Chemical Society
DOI :
10.1021/jacs.1c11457
Article PDF
show_chart

The development of synthetic nonequilibrium systems has gathered increasing attention due to their potential to illustrate the dynamic, complex, and emergent traits of biological systems. Simple building blocks capable of interacting via dynamic covalent chemistry and physical assembly in a reaction network under nonequilibrium conditions can contribute to our understanding of complex systems of life and its origin. Herein, we have demonstrated the nonequilibrium generation of catalytic supramolecular assemblies from simple heterocycle melamine driven by a thermodynamically activated ester. Utilizing a reversible covalent linkage, an imidazole moiety was recruited by the assemblies to access a catalytic transient state that dissipated energy via accelerated hydrolysis of the activated ester. The nonequilibrium assemblies were further capable of temporally binding to a hydrophobic guest to modulate its photophysical properties. Notably, the presence of an exogenous aromatic base augmented the lifetime of the catalytic microphases, reflecting their higher kinetic stability.

Twitter
Please Log In to leave a comment.