Yihao Tian

30
Nov 22, 2021
Journal of Interconnection Networks
DOI :
10.1142/s0219265921430088
Article
show_chart

Journal of Interconnection Networks, Ahead of Print. Big data is an unstructured data set with a considerable volume, coming from various sources such as the internet, business organizations, etc., in various formats. Predicting consumer behavior is a core responsibility for most dealers. Market research can show consumer intentions; it can be a big order for a best designed research project to penetrate the veil, protecting real customer motivations from closer scrutiny. Customer behavior usually focuses on customer data mining, and each model is structured at one stage to answer one query. Customer behavior prediction is a complex and unpredictable challenge. In this paper, advanced mathematical and big data analytical (BDA) methods to predict customer behavior. Predictive behavior analytics can provide modern marketers with multiple insights to optimize efforts in their strategies. This model goes beyond analyzing historical evidence and making the most knowledgeable assumptions about what will happen in the future using mathematical. Because the method is complex, it is quite straightforward for most customers. As a result, most consumer behavior models, so many variables that produce predictions that are usually quite accurate using big data. This paper attempts to develop a model of association rule mining to predict customers’ behavior, improve accuracy, and derive major consumer data patterns. The finding recommended BDA method improves Big data analytics usability in the organization (98.2%), risk management ratio (96.2%), operational cost (97.1%), customer feedback ratio (98.5%), and demand prediction ratio (95.2%).

Please Log In to leave a comment.