Daniel B. Cooney, Fernando W. Rossine, Dylan H. Morris, Simon A. Levin

13
Sep 20, 2021
Arxiv
DOI :
2109.09357v1
Article PDF Preprint
show_chart

The evolution of complex cellular life involved two major transitions: the encapsulation of self-replicating genetic entities into cellular units and the aggregation of individual genes into a collectively replicating genome. In this paper, we formulate a minimal model of the evolution of proto-chromosomes within protocells. We model a simple protocell composed of two types of genes: a "fast gene" with an advantage for gene-level self-replication and a "slow gene" that replicates more slowly at the gene level, but which confers an advantage for protocell-level reproduction. Protocell-level replication capacity depends on cellular composition of fast and slow genes. We use a partial differential equation to describe how the composition of genes within protocells evolves over time under within-cell and between-cell competition. We find that the gene-level advantage of fast replicators casts a long shadow on the multilevel dynamics of protocell evolution: no level of between-protocell competition can produce coexistence of the fast and slow replicators when the two genes are equally needed for protocell-level reproduction. By introducing a "dimer replicator" consisting of a linked pair of the slow and fast genes, we show analytically that coexistence between the two genes can be promoted in pairwise multilevel competition between fast and dimer replicators, and provide numerical evidence for coexistence in trimorphic competition between fast, slow, and dimer replicators. Our results suggest that dimerization, or the formation of a simple chromosome-like dimer replicator, can help to overcome the shadow of lower-level selection and work in concert with deterministic multilevel selection to allow for the coexistence of two genes that are complementary at the protocell-level but compete at the level of individual gene-level replication.
Please Log In to leave a comment.