May 12, 2022
in Frontiers in cell and developmental biology
Peroxisomes are dynamic multipurpose organelles with a major function in fatty acid oxidation and breakdown of hydrogen peroxide. Many proteins destined for the peroxisomal matrix contain a C-terminal peroxisomal targeting signal type 1 (PTS1), which is recognized by tetratricopeptide repeat (TPR) proteins of the Pex5 family. Various species express at least two different Pex5 proteins, but how th...
While critical for neurotransmitter synthesis, 14-3-3 proteins are often assumed to have redundant functions due to their ubiquitous expression, but despite this assumption, various 14-3-3 isoforms have been implicated in regulating metabolism. We previously reported contributions of 14-3-3ζ in β-cell function, but these studies were performed in tumor-derived MIN6 cells and systemic knockout mice...
The (in)ability to permeate membranes is a key feature of chemical biology probes that defines their suitability for specific applications. Here we report sulfonated rhodamines that endow xanthene dyes with cellular impermeability for analysis of surface proteins. We fuse charged sulfonates to red and far-red dyes to obtain Sulfo549 and Sulfo646, respectively, and further link these to benzylguani...
Glucagon-like peptide-1 receptor (GLP1R) agonists target the GLP1R, whereas dual GLP1R/ gastric inhibitory polypeptide receptor (GIPR) agonists target both the GLP1R and GIPR. Despite the importance of these drug classes for the treatment of diabetes and obesity, still very little is known about the localization of GLP1R and GIPR themselves. Complicating matters is the low abundance of GLP1R and G...
The glucagon-like peptide-1 receptor (GLP1R) is a class B G protein-coupled receptor (GPCR) involved in metabolism. Presently, its visualization is limited to genetic manipulation, antibody detection or the use of probes that stimulate receptor activation. Herein, we present LUXendin645, a far-red fluorescent GLP1R antagonistic peptide label. LUXendin645 produces intense and specific membrane labe...
Employing self-labelling protein tags for the attachment of fluorescent dyes has become a routine and powerful technique in optical microscopy to visualize and track fused proteins. However, membrane permeability of the dyes and the associated background signals can interfere with the analysis of extracellular labelling sites. Here we describe a novel approach to improve extracellular labelling by...
Employing self-labelling protein tags for the attachment of fluorescent dyes has become a routine and powerful technique in optical microscopy to visualize and track fused proteins. However, membrane permeability of the dyes and the associated background signals can interfere with the analysis of extracellular labeling sites. Here we describe a novel approach to improve extracellular labeling by f...